Introduction	Reliability	Problem	References

Variation in Evidence and Simpson's Paradox

Corey Dethier

University of Notre Dame Philosophy Department corey.dethier@gmail.com

Jan. 11, 2020

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Introduction	Reliability	Problem	References

Introduction

Introduction	Reliability	SP	Problem	References
●00	00000000	0000000	0000	
Motivation				

There are a *lot* of different models of "variation in evidence" going under various different names: robustness, consilience, unification, coherence, focused correlation, triangulation...

Formal models include those offered by: Bovens and Hartmann (2003), Claveau (2013), Fitelson (2001), Heesen, Bright, and Zucker (2019), Lehtinen (2016, 2018), McGrew (2003), Myrvold (1996, 2003, 2017), Schlosshauer and Wheeler (2011), Schupbach (2005, 2018), Sober (1989), Staley (2004), Stegenga and Menon (2017), Wheeler (2009, 2012), and Wheeler and Scheines (2013), and that list doesn't include applications.

Introduction	Reliability	SP	Problem	References
○●○	0000000	0000000	0000	
The project				

The project in brief: provide a unified account (of unification).

This presentation in brief: weaken the assumptions of Bovens and Hartmann (2003), see what happens.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Reliability	SP	Problem	References
○●○	0000000	0000000	0000	
The project				

The project in brief: provide a unified account (of unification).

This presentation in brief: weaken the assumptions of Bovens and Hartmann (2003), see what happens.

Initial reaction: avoiding Simpson's paradox is a sufficient condition on varied evidence confirming!

Introduction	Reliability	SP	Problem	References
○●○	0000000	0000000	0000	
The project				

The project in brief: provide a unified account (of unification).

This presentation in brief: weaken the assumptions of Bovens and Hartmann (2003), see what happens.

Initial reaction: avoiding Simpson's paradox is a sufficient condition on varied evidence confirming!

Present thought: the connection with Simpson's paradox shows why this sort of analysis is going to get into trouble.

Introduction	Reliability	SP	Problem	References
000	0000000	0000000	0000	
The plan				

- 1. Why you might want a reliability-based model.
- 2. The relationship between confirmation and Simpson's paradox.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3. Why this relationship is a problem and not a solution.

Introduction	Reliability	Problem	References

Reliability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Sources of	fevidence			
Introduction	Reliability	SP	Problem	References
000	•0000000	0000000	0000	

Consider:

- Witnesses testifying to the same fact.
- Multiple thermometers.
- Peterson (2003): study shows that global warming trend is robust across changes in location.

Crucial to these examples is that there's a difference between the *sources* of information.

H and R jointly control E; "varation" can be defined in terms of probabilistic relationships between R variables.

E.g.:

$$V = \frac{Pr(R_1 \vee R_2) - Pr(R_1 \& R_2)}{Pr(R_1 \vee R_2)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Reliability	SP	Problem	References
000	00●00000	0000000	0000	
How does E a	affect H ?			

Suppose we learn E_1 and E_2 .

1. Direct effect: changes the probability of H given R_1 and/or R_2 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2. Indirect effect: changes the probability of R_1 and/or R_2 .

Before learning $E_1\&E_2$:

After learning $E_1\&E_2$:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Introduction	Reliability	SP	Problem	References
000	00000●00	0000000	0000	
Three idealiza	itions			

IC1: *H* is probabilistically independent of the reliability of any source: $Pr(H) = Pr(H|R_i) = Pr(H|\neg R_i)$.

IC2: The posterior probability given by reliable evidence is not affected by the reliability of other sources of evidence: $Pr(H|E_i, R_i, R_j) = Pr(H|E_i, R_i, \neg R_j).$

EC: there's no conditionalization on unreliable evidence: for all X, then $Pr(H|E_i, \neg R_i, X) = Pr(H|\neg R_i, X)$.

Introduction	Reliability	SP	Problem	References
000	000000●0	0000000	0000	
The direct	effect			

Let
$$\delta(H, E) = Pr(H|E) - Pr(H)$$
. Then:

$$\delta(H, E_1 \& E_2) = Pr(R_1, R_2) \\ + Pr(R_1, \neg R_2) \\ + Pr(\neg R_1, R_2) \\ + Pr(\neg R_1, R_2) \\ \times \delta(H, E_1 | R_1, \neg R_2) \\ \times \delta(H, E_2 | \neg R_1, R_2)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Introduction	Reliability	SP	Problem	References
000	000000●0	0000000	0000	
The direct	effect			

Let
$$\delta(H, E) = Pr(H|E) - Pr(H)$$
. Then:

$$\delta(H, E_1 \& E_2) = Pr(R_1, R_2) \\ + Pr(R_1, \neg R_2) \\ + Pr(\neg R_1, R_2) \\ + Pr(\neg R_1, R_2) \\ \times \delta(H, E_1 | R_1, \neg R_2) \\ \times \delta(H, E_2 | \neg R_1, R_2)$$

The only value that can be negative is $\delta(H, E_1 \& E_2 | R_1, R_2)$ (compare Mayo-Wilson 2011, 2014; Stegenga and Menon 2017).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Reliability	SP	Problem	References
000	0000000●	0000000	0000	
The direct	results			

Result 1: Sufficient condition on confirmation:

$$-\delta(H, E_1 \& E_2 | R_1, R_2) < \frac{V(R_1, R_2)}{1 - V(R_1, R_2)} \delta(H, E | R)$$

Result 2: (Assuming that the sufficient condition holds:) increasing $Pr(R_1 \lor R_2)$ increases the degree of confirmation, *ceteris paribus*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Introduction	Reliability	SP	Problem	References

Simpson's Paradox

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	0000000	•00000	0000	
I he indire	ect effect			

Recall: learning E_1 and E_2 has two effects.

1. Direct effect: changes the probability of H given R_1 and/or R_2 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2. Indirect effect: changes the probability of R_1 and/or R_2 . We've only discussed the direct effect. How does considering the indirect effect change things?

More com	nlexityl			
Introduction	Reliability	SP	Problem	References
000	0000000	0●00000	0000	

This is what $\delta(H, E_1 \& E_2)$ looks like (**EC** enforced):

 $= Pr(R_1, R_2|E_1, E_2)Pr(H|E_1, E_2, R_1, R_2) - Pr(R_1, R_2)Pr(H|R_1, R_2)$ $+ Pr(R_1, \neg R_2|E_1, E_2)Pr(H|E_1, R_1, \neg R_2) - Pr(R_1, \neg R_2)Pr(H|R_1, \neg R_2)$ $+ Pr(\neg R_1, R_2|E_1, E_2)Pr(H|E_2, \neg R_1, R_2) - Pr(\neg R_1, R_2)Pr(H|\neg R_1, R_2)$ $+ Pr(\neg R_1, \neg R_2|E_1, E_2)Pr(H|\neg R_1, \neg R_2) - Pr(\neg R_1, \neg R_2)Pr(H|\neg R_1, \neg R_2)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The same condition identified earlier

▲□ > ▲□ > ▲ 三 > ▲ 三 > ● ④ < ④

Recall **IC1**: *H* is probabilistically independent of the reliability of any source: $Pr(H) = Pr(H|R_i) = Pr(H|\neg R_i)$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

What happens if we relax this assumption?

Recall **IC1**: *H* is probabilistically independent of the reliability of any source: $Pr(H) = Pr(H|R_i) = Pr(H|\neg R_i)$.

What happens if we relax this assumption? Same result for $\delta(H, E_1 \& E_2)$:

 $= Pr(R_1, R_2|E_1, E_2)Pr(H|E_1, E_2, R_1, R_2) - Pr(R_1, R_2)Pr(H|R_1, R_2)$ $+ Pr(R_1, \neg R_2|E_1, E_2)Pr(H|E_1, R_1, \neg R_2) - Pr(R_1, \neg R_2)Pr(H|R_1, \neg R_2)$ $+ Pr(\neg R_1, R_2|E_1, E_2)Pr(H|E_2, \neg R_1, R_2) - Pr(\neg R_1, R_2)Pr(H|\neg R_1, R_2)$ $+ Pr(\neg R_1, \neg R_2|E_1, E_2)Pr(H|\neg R_1, \neg R_2) - Pr(\neg R_1, \neg R_2)Pr(H|\neg R_1, \neg R_2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simpson's	paradox			
Introduction	Reliability	SP	Problem	References
000	00000000	00000●0	0000	

Pearl (2014): "Simpson's paradox refers to a phenomena whereby the association between a pair of variables (X, Y) reverses sign upon conditioning of a third variable, Z, regardless of the value taken by Z. If we partition the data into subpopulations, each representing a specific value of the third variable, the phenomena appears as a sign reversal between the associations measured in the disaggregated subpopulations relative to the aggregated data, which describes the population as a whole."

What's happened: each worldly "subpopulation" observes an increase in confirmation while confirmation decreases overall.

Introduction	Reliability	SP	Problem	References
000	00000000	000000	0000	
A cool result?	2			

Potential upshot: for confirmation from varied evidence, all we need is to (a) avoid Simpson's paradox situations and (b) avoid the reversals discussed by Stegenga and Menon (2017).

And that result would hold in a general setting, with relatively few idealizations.

Introduction	Reliability	Problem	References

A problem, not a solution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Reliability	SP	Problem	References
000	0000000	0000000	●000	
Moving for	ward			

What's the next step for a theory of variation in evidence?

Based on the above, an account of how **R** is affected by **E**—i.e., how our the probability of reliability changes with multiple confirming reports.

(That's essentially what Bovens and Hartmann (2003) and Claveau (2013) are both doing.)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction	Reliability	SP	Problem	References
000	00000000	0000000	o●oo	
The problem				

Notice, however, that ${\bf E}$ will have both direct and indirect (through ${\bf H})$ effects on ${\bf R}.$

Bovens and Hartmann (2003) and Claveau (2013) both avoid this problem with IC1.

But IC1 is horribly unrealistic.

000		000000	0000	
The problem	then			

Claim: There's no interesting general relationship between the hypotheses that we're interested in testing and the (un)reliability of our tools.

Means that we're unlikely to be able to use the present tools to say anything more interesting about when these weird reversals occur.

Introduction	Reliability	SP	Problem	References
000	0000000	0000000	000●	
Thank you				

◆□ → < @ → < E → < E → ○ < ♡ < ♡</p>

Thank you!

Introd 000	luction Reliability 00000000	SP 0000000	Problem 0000	References
	Bovens, Luc and Stephan	Hartmann (2003)). Bayesian	
	Claveau, François (2013).	The Independence	ce Condition in t	the
	Fitelson, Branden (2001).	A Bayesian Acco	unt of Independ	94–118. lent
	Evidence with Application Heesen, Remco, Liam Kof	ons. <i>Philosophy</i> i Bright, and Anc	of Science 68.3: Irew Zucker (20	123–40. 19).
	Vindicating Methodolog 196.8: 3067–81.	ical Triangulatior	n. <i>Synthese</i>	
	Lehtinen, Aki (2016). Allo	cating Confirmat	ion with Deriva	tional
	Robustness. <i>Philosophi</i> - (2018). Derivational Ro	<i>cal Studies</i> 173.9 bustness and Indi	: 2487–509. rect Confirmation	on.
	Mayo-Wilson, Conor (2011 Philosophy of Science 7). L). The Problem (of Piecemeal Ind	duction.
_	i mosopny of Science i	0.5.004 - 14.		

- (2014). The Limits of Piecemeal Causal Inference. The British Journal for the Philosophy of Science 65.2: 213–49.

・ロト・日本・モート モー うへぐ

Introdu 000	duction Reliability 00000000	SP 0000000	Problem 0000	References
	McGrew, Timothy (2003).	Confirmation, H	leuristics, and	
	Explanatory Reasoning.	The British Jou	Irnal for the Phil	losophy
	of Science 54.4: 553-67.			
	Myrvold, Wayne (1996). Ba	ayesianism and	Diverse Evidence	e: A
	Reply to Andrew Wayne.	Philosophy of	<i>Science</i> 63.4: 66	61–65.
	- (2003). A Bayesian Acco	ount of the Virtu	ue of Unification.	
	Philosophy of Science 70).2: 399–423.		
	- (2017). On the Evidentia	al Import of Uni	fication. Philoso	ophy of
	Science 84.1: 92–114.			
	Pearl, Judea (2014). Comm	nent: Understan	ding Simpson's F	^D aradox.
	The American Statistici	an 68.1: 8–13.		
	Peterson, Thomas C. (2003	3). Assessment of	of Urban Versus	Rural In
	Situ Surface Temperatur	es in the Contig	guous United Sta	tes: No
	Difference Found. Journ	al of Climate 1	6.18: 2941–59.	
	Schlosshauer, Maximilian a	nd Gregory Wh	eeler (2011). Foo	cused

Correlation, Confirmation, and the Jigsaw Puzzle of Variable Evidence. *Philosophy of Science* 78.3: 376–92.

Introd 000	duction Reliability 00000000	SP 0000000	Problem 0000	References
	Schupbach, Jonah (2005). On	a Bayesian	Analysis of the	√irtue of
	 – (2018). Robustness Analysis <i>Journal for the Philosophy of</i> 	as Explanat	: 594–607. tory Reasoning. 9.1: 275–300.	British
	Sober, Elliot (1989). Independ	ent Evidence	e About a Comn –87	non
	Staley, Kent W. (2004). Robus	st Evidence	and Secure Evid	ence
	Stegenga, Jacob and Tarun M	enon (2017)	. Robustness an	d
	Independent Evidence. <i>Phil</i> Wheeler, Gregory (2009). Focu	losophy of So used Correlat	<i>cience</i> 84.3: 414 tion and Confirn	–35. nation.
	The British Journal for the - (2012) Explaining the Limit	Philosophy o	of Science 60.1: s Impossibility F	79–100. Result
	Southern Journal of Philoso	phy 50.1: 13	36–50.	
	Wheeler, Gregory and Richard Confirmation through Causa	Scheines (2 ation. <i>Mind</i>	013). Coherence 122.485: 135–7	and 0.