Variation in Evidence and Simpson's Paradox

Corey Dethier

University of Notre Dame Philosophy Department corey.dethier@gmail.com

$$
\text { Jan. 11, } 2020
$$

Introduction

Motivation

There are a lot of different models of "variation in evidence" going under various different names: robustness, consilience, unification, coherence, focused correlation, triangulation...

Formal models include those offered by: Bovens and Hartmann (2003), Claveau (2013), Fitelson (2001), Heesen, Bright, and Zucker (2019), Lehtinen (2016, 2018), McGrew (2003), Myrvold (1996, 2003, 2017), Schlosshauer and Wheeler (2011), Schupbach (2005, 2018), Sober (1989), Staley (2004), Stegenga and Menon (2017), Wheeler (2009, 2012), and Wheeler and Scheines (2013), and that list doesn't include applications.

The project

The project in brief: provide a unified account (of unification).
This presentation in brief: weaken the assumptions of Bovens and Hartmann (2003), see what happens.

The project

The project in brief: provide a unified account (of unification).
This presentation in brief: weaken the assumptions of Bovens and Hartmann (2003), see what happens.

Initial reaction: avoiding Simpson's paradox is a sufficient condition on varied evidence confirming!

The project

The project in brief: provide a unified account (of unification).
This presentation in brief: weaken the assumptions of Bovens and Hartmann (2003), see what happens.

Initial reaction: avoiding Simpson's paradox is a sufficient condition on varied evidence confirming!

Present thought: the connection with Simpson's paradox shows why this sort of analysis is going to get into trouble.

The plan

1. Why you might want a reliability-based model.
2. The relationship between confirmation and Simpson's paradox.
3. Why this relationship is a problem and not a solution.

Reliability

Sources of evidence

Consider:

- Witnesses testifying to the same fact.
- Multiple thermometers.
- Peterson (2003): study shows that global warming trend is robust across changes in location.

Crucial to these examples is that there's a difference between the sources of information.

The basic picture

\mathbf{H} and \mathbf{R} jointly control \mathbf{E}; "varation" can be defined in terms of probabilistic relationships between \mathbf{R} variables.
E.g.:
$V=\frac{\operatorname{Pr}\left(R_{1} \vee R_{2}\right)-\operatorname{Pr}\left(R_{1} \& R_{2}\right)}{\operatorname{Pr}\left(R_{1} \vee R_{2}\right)}$

How does E affect H?

Suppose we learn E_{1} and E_{2}.

1. Direct effect: changes the probability of H given R_{1} and/or R_{2}.
2. Indirect effect: changes the probability of R_{1} and/or R_{2}.

The direct effect

Before learning $E_{1} \& E_{2}$:

After learning $E_{1} \& E_{2}$:

$$
R_{1} R_{2}
$$

$$
R_{1} \neg R_{2}
$$

$\neg R_{1} R_{2} \quad \neg R_{1} \neg R_{2}$

The indirect effect

Before learning $E_{1} \& E_{2}$:

After learning $E_{1} \& E_{2}$:

$R_{1} R_{2}$
$R_{1} \neg R_{2}$

$\neg R_{1} R_{2}$
$\neg R_{1} \neg R_{2}$

Three idealizations

IC1: H is probabilistically independent of the reliability of any source: $\operatorname{Pr}(H)=\operatorname{Pr}\left(H \mid R_{i}\right)=\operatorname{Pr}\left(H \mid \neg R_{i}\right)$.

IC2: The posterior probability given by reliable evidence is not affected by the reliability of other sources of evidence:
$\operatorname{Pr}\left(H \mid E_{i}, R_{i}, R_{j}\right)=\operatorname{Pr}\left(H \mid E_{i}, R_{i}, \neg R_{j}\right)$.
EC: there's no conditionalization on unreliable evidence: for all X, then $\operatorname{Pr}\left(H \mid E_{i}, \neg R_{i}, X\right)=\operatorname{Pr}\left(H \mid \neg R_{i}, X\right)$.

The direct effect

Let $\delta(H, E)=\operatorname{Pr}(H \mid E)-\operatorname{Pr}(H)$. Then:

$$
\begin{array}{rlr}
\delta\left(H, E_{1} \& E_{2}\right) & =\operatorname{Pr}\left(R_{1}, R_{2}\right) & \times \delta\left(H, E_{1} \& E_{2} \mid R_{1}, R_{2}\right) \\
& +\operatorname{Pr}\left(R_{1}, \neg R_{2}\right) & \times \delta\left(H, E_{1} \mid R_{1}, \neg R_{2}\right) \\
& +\operatorname{Pr}\left(\neg R_{1}, R_{2}\right) & \\
\times \delta\left(H, E_{2} \mid \neg R_{1}, R_{2}\right)
\end{array}
$$

The direct effect

Let $\delta(H, E)=\operatorname{Pr}(H \mid E)-\operatorname{Pr}(H)$. Then:

$$
\begin{array}{rlr}
\delta\left(H, E_{1} \& E_{2}\right) & =\operatorname{Pr}\left(R_{1}, R_{2}\right) & \times \delta\left(H, E_{1} \& E_{2} \mid R_{1}, R_{2}\right) \\
& +\operatorname{Pr}\left(R_{1}, \neg R_{2}\right) & \times \delta\left(H, E_{1} \mid R_{1}, \neg R_{2}\right) \\
& +\operatorname{Pr}\left(\neg R_{1}, R_{2}\right) & \\
\times \delta\left(H, E_{2} \mid \neg R_{1}, R_{2}\right)
\end{array}
$$

The only value that can be negative is $\delta\left(H, E_{1} \& E_{2} \mid R_{1}, R_{2}\right)$ (compare Mayo-Wilson 2011, 2014; Stegenga and Menon 2017).

The direct results

Result 1: Sufficient condition on confirmation:

$$
-\delta\left(H, E_{1} \& E_{2} \mid R_{1}, R_{2}\right)<\frac{V\left(R_{1}, R_{2}\right)}{1-V\left(R_{1}, R_{2}\right)} \delta(H, E \mid R)
$$

Result 2: (Assuming that the sufficient condition holds:) increasing $\operatorname{Pr}\left(R_{1} \vee R_{2}\right)$ increases the degree of confirmation, ceteris paribus.

Simpson's Paradox

The indirect effect

Recall: learning E_{1} and E_{2} has two effects.

1. Direct effect: changes the probability of H given R_{1} and/or R_{2}.
2. Indirect effect: changes the probability of R_{1} and/or R_{2}.

We've only discussed the direct effect. How does considering the indirect effect change things?

More complexity!

This is what $\delta\left(H, E_{1} \& E_{2}\right)$ looks like (EC enforced):

$$
\begin{aligned}
& =\operatorname{Pr}\left(R_{1}, R_{2} \mid E_{1}, E_{2}\right) \operatorname{Pr}\left(H \mid E_{1}, E_{2}, R_{1}, R_{2}\right)-\operatorname{Pr}\left(R_{1}, R_{2}\right) \operatorname{Pr}\left(H \mid R_{1}, R_{2}\right) \\
& +\operatorname{Pr}\left(R_{1}, \neg R_{2} \mid E_{1}, E_{2}\right) \operatorname{Pr}\left(H \mid E_{1}, R_{1}, \neg R_{2}\right)-\operatorname{Pr}\left(R_{1}, \neg R_{2}\right) \operatorname{Pr}\left(H \mid R_{1}, \neg R_{2}\right) \\
& +\operatorname{Pr}\left(\neg R_{1}, R_{2} \mid E_{1}, E_{2}\right) \operatorname{Pr}\left(H \mid E_{2}, \neg R_{1}, R_{2}\right)-\operatorname{Pr}\left(\neg R_{1}, R_{2}\right) \operatorname{Pr}\left(H \mid \neg R_{1}, R_{2}\right) \\
& +\operatorname{Pr}\left(\neg R_{1}, \neg R_{2} \mid E_{1}, E_{2}\right) \operatorname{Pr}\left(H \mid \neg R_{1}, \neg R_{2}\right)-\operatorname{Pr}\left(\neg R_{1}, \neg R_{2}\right) \operatorname{Pr}\left(H \mid \neg R_{1}, \neg R_{2}\right)
\end{aligned}
$$

The same condition identified earlier

Before learning $E_{1} \& E_{2}$:
After learning $E_{1} \& E_{2}$:

$R_{1} R_{2}$

$\neg R_{1} R_{2}$

$\neg R_{1} \neg R_{2}$

Not quite that simple

Recall IC1: H is probabilistically independent of the reliability of any source: $\operatorname{Pr}(H)=\operatorname{Pr}\left(H \mid R_{i}\right)=\operatorname{Pr}\left(H \mid \neg R_{i}\right)$.
What happens if we relax this assumption?

Not quite that simple

Recall IC1: H is probabilistically independent of the reliability of any source: $\operatorname{Pr}(H)=\operatorname{Pr}\left(H \mid R_{i}\right)=\operatorname{Pr}\left(H \mid \neg R_{i}\right)$.
What happens if we relax this assumption? Same result for $\delta\left(H, E_{1} \& E_{2}\right):$
$=\operatorname{Pr}\left(R_{1}, R_{2} \mid E_{1}, E_{2}\right) \operatorname{Pr}\left(H \mid E_{1}, E_{2}, R_{1}, R_{2}\right)-\operatorname{Pr}\left(R_{1}, R_{2}\right) \operatorname{Pr}\left(H \mid R_{1}, R_{2}\right)$
$+\operatorname{Pr}\left(R_{1}, \neg R_{2} \mid E_{1}, E_{2}\right) \operatorname{Pr}\left(H \mid E_{1}, R_{1}, \neg R_{2}\right)-\operatorname{Pr}\left(R_{1}, \neg R_{2}\right) \operatorname{Pr}\left(H \mid R_{1}, \neg R_{2}\right)$
$+\operatorname{Pr}\left(\neg R_{1}, R_{2} \mid E_{1}, E_{2}\right) \operatorname{Pr}\left(H \mid E_{2}, \neg R_{1}, R_{2}\right)-\operatorname{Pr}\left(\neg R_{1}, R_{2}\right) \operatorname{Pr}\left(H \mid \neg R_{1}, R_{2}\right)$
$+\operatorname{Pr}\left(\neg R_{1}, \neg R_{2} \mid E_{1}, E_{2}\right) \operatorname{Pr}\left(H \mid \neg R_{1}, \neg R_{2}\right)-\operatorname{Pr}\left(\neg R_{1}, \neg R_{2}\right) \operatorname{Pr}\left(H \mid \neg R_{1}, \neg R_{2}\right)$

A new problem emerges

Before learning $E_{1} \& E_{2}$:

After learning $E_{1} \& E_{2}$:

Simpson's paradox

Pearl (2014): "Simpson's paradox refers to a phenomena whereby the association between a pair of variables (X, Y) reverses sign upon conditioning of a third variable, Z, regardless of the value taken by Z . If we partition the data into subpopulations, each representing a specific value of the third variable, the phenomena appears as a sign reversal between the associations measured in the disaggregated subpopulations relative to the aggregated data, which describes the population as a whole."

What's happened: each worldly "subpopulation" observes an increase in confirmation while confirmation decreases overall.

A cool result?

Potential upshot: for confirmation from varied evidence, all we need is to (a) avoid Simpson's paradox situations and (b) avoid the reversals discussed by Stegenga and Menon (2017).

And that result would hold in a general setting, with relatively few idealizations.

A problem, not a solution

Moving forward

What's the next step for a theory of variation in evidence?
Based on the above, an account of how \mathbf{R} is affected by E-i.e., how our the probability of reliability changes with multiple confirming reports.
(That's essentially what Bovens and Hartmann (2003) and Claveau (2013) are both doing.)

The problem

Notice, however, that E will have both direct and indirect (through $\mathbf{H})$ effects on \mathbf{R}.

Bovens and Hartmann (2003) and Claveau (2013) both avoid this problem with IC1.

But IC1 is horribly unrealistic.

The problem, then

Claim: There's no interesting general relationship between the hypotheses that we're interested in testing and the (un)reliability of our tools.

Means that we're unlikely to be able to use the present tools to say anything more interesting about when these weird reversals occur.

Thank you

Thank you!

R Bovens，Luc and Stephan Hartmann（2003）．Bayesian Epistemology．Oxford：Oxford University Press．
R Claveau，François（2013）．The Independence Condition in the Variety－of－Evidence Thesis．Philosophy of Science 80．1：94－118．
國 Fitelson，Branden（2001）．A Bayesian Account of Independent Evidence with Applications．Philosophy of Science 68．3：123－40．
嘼 Heesen，Remco，Liam Kofi Bright，and Andrew Zucker（2019）．
Vindicating Methodological Triangulation．Synthese 196．8：3067－81．
（i）Lehtinen，Aki（2016）．Allocating Confirmation with Derivational Robustness．Philosophical Studies 173．9：2487－509．
－（2018）．Derivational Robustness and Indirect Confirmation． Erkenntnis 83．3：539－76．
围 Mayo－Wilson，Conor（2011）．The Problem of Piecemeal Induction． Philosophy of Science 78．5：864－74．
－（2014）．The Limits of Piecemeal Causal Inference．The British Journal for the Philosophy of Science 65．2：213－49．

McGrew, Timothy (2003). Confirmation, Heuristics, and Explanatory Reasoning. The British Journal for the Philosophy of Science 54.4: 553-67.
囯 Myrvold, Wayne (1996). Bayesianism and Diverse Evidence: A Reply to Andrew Wayne. Philosophy of Science 63.4: 661-65.

- (2003). A Bayesian Account of the Virtue of Unification. Philosophy of Science 70.2: 399-423.
- (2017). On the Evidential Import of Unification. Philosophy of Science 84.1: 92-114.
- Pearl, Judea (2014). Comment: Understanding Simpson's Paradox. The American Statistician 68.1: 8-13.
國 Peterson, Thomas C. (2003). Assessment of Urban Versus Rural In Situ Surface Temperatures in the Contiguous United States: No Difference Found. Journal of Climate 16.18: 2941-59.
R Schlosshauer, Maximilian and Gregory Wheeler (2011). Focused Correlation, Confirmation, and the Jigsaw Puzzle of Variable Evidence. Philosophy of Science 78.3: 376-92.

雷 Schupbach，Jonah（2005）．On a Bayesian Analysis of the Virtue of Unification．Philosophy of Science 72．4：594－607．
嗇－（2018）．Robustness Analysis as Explanatory Reasoning．British Journal for the Philosophy of Science 69．1：275－300．
嗇 Sober，Elliot（1989）．Independent Evidence About a Common Cause．Philosophy of Science 56．2：275－87．
R Staley，Kent W．（2004）．Robust Evidence and Secure Evidence Claims．Philosophy of Science 71．4：467－88．
國 Stegenga，Jacob and Tarun Menon（2017）．Robustness and Independent Evidence．Philosophy of Science 84．3：414－35．
國 Wheeler，Gregory（2009）．Focused Correlation and Confirmation． The British Journal for the Philosophy of Science 60．1：79－100．
－（2012）．Explaining the Limits of Olsson＇s Impossibility Result． Southern Journal of Philosophy 50．1：136－50．
國 Wheeler，Gregory and Richard Scheines（2013）．Coherence and Confirmation through Causation．Mind 122．485：135－70．

