▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Interpreting Probability Claims in Climate Science

Corey Dethier

GRK2073: Integrating Ethics and Epistemology of Scientific Research Leibniz Universität Hannover corey.dethier@gmail.com

September 17, 2021 European Philosophy of Science Association

Intro	Negative claim	Positive claim	References
0000			

Intro

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

The IPCC and probabilistic language

"ECS is positive, *likely* in the range 1.5° C to 4.5° C with *high* confidence, extremely unlikely less than 1° C (*high* confidence) and very unlikely greater than 6° C (medium confidence)."

- IPCC (2013, 81)

"the best estimate of ECS is 3° C, the *likely* range is 2.5° C to 4° C, and the *very likely* range is 2° C to 5° C. It is *virtually certain* that ECS is larger than 1.5° C. ... the 5° C upper end of the very likely range is assessed to have medium confidence and the other bounds have high confidence."

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- IPCC (in press, chapter 7)

- (1) What does the IPCC mean by "confidence"?
- (2) What does the IPCC mean by "likelihood"?
- (3) What is the relationship between the two?

Some prior discussions: Helgeson et al. (2018), Mastrandrea et al. (2010), and Winsberg (2018)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Positive claim

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Some questions

What does the IPCC mean by "confidence"? What does the IPCC mean by "likelihood"? What is the relationship between the two?

Some prior discussions: Helgeson et al. (2018), Mastrandrea et al. (2010), and Winsberg (2018)

The talk

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Negative claim: there is no traditional interpretation of probabilities that fits the actual practice $(\S1)$.

Positive claim: we should interpret the IPCC's use of "likelihood" in a *deflationist* (or perhaps *operationalist*) way (§2).

Negative claim	Positive claim	References
000000		

No traditional interpretation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

M/bat tba	IPCC save about	"likeliheede"	
	00000		
Intro	Negative claim	Positive claim	References

Likelihood: "Quantified measures of uncertainty in a finding expressed probabilistically."

> "Virtually certain" "Extremely likely" "Very likely" "Likely" "About as likely as not" $\mid p = 0.33-0.66$ "Unlikely" etc.

p = 0.99-1.00 p = 0.95-1.00p = 0.90-1.00p = 0.66-1.00p = 0.00-0.33

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

See Mastrandrea et al. (2010)

Intro 0000 Positive claim

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Classical stats in IPCC reports 1

"GHGs [greenhouse gases] contributed a global mean surface warming *likely* to be between 0.5° C and 1.3° C over the period 1951–2010."

- IPCC (2013, 869)

Numbers here are based on Gillett et al. (2013) and Jones et al. (2013); see IPCC (2013, 883).

Positive claim

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Classical stats in IPCC reports 2

"Attribution results are typically expressed in terms of conventional 'frequentist' confidence intervals or results of hypothesis tests: when it is reported that the response to anthropogenic GHG increase is *very likely* greater than half the total observed warming, it means that the null hypothesis that the GHG-induced warming is less than half the total can be rejected with the data available at the 10% significance level."

- IPCC (2013, 878)

Intro Negative claim 0000 000€00 Positive claim 00000 References

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Bayesian stats in IPCC reports 1

"ECS is positive, *likely* in the range 1.5° C to 4.5° C with *high* confidence, extremely unlikely less than 1° C (*high* confidence) and very unlikely greater than 6° C (medium confidence)."

- IPCC (2013, 81)

 Intro
 Negative claim
 Positive claim
 References

 0000
 000000
 00000

Bayesian stats in IPCC reports 2

"the probabilistic estimates available in the literature for climate system parameters, such as ECS and TCR have all been based, implicitly or explicitly, on adopting a Bayesian approach and therefore, even if it is not explicitly stated, involve using some kind of prior information. The shape of the prior has been derived from expert judgement in some studies, observational or experimental evidence in others or from the distribution of the sample of models available."

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- (IPCC 2013, 922)

Intro	Negative claim	Positive claim	References
0000	00000●	00000	
Why not both	?		

Estimates for anthropogentic warming by period in °C:

	1986-2005	1995-2014	2006-2015	2010-2019
Study 1	0.52-0.77	0.69-0.94	0.81-1.08	0.89-1.17
Study 2	0.32-0.94	0.63-1.06	0.74-1.22	0.92-1.30
Study 3	0.58-0.82	0.75-0.98	0.87-1.10	0.94-1.22
IPCC AR6	0.3-1.0	0.6-1.1	0.7-1.3	0.8-1.3

Reproduced from IPCC (in press, chapter 3).

Studies 1-3 are Ribes et al. (2021), Gillett et al. (2021), and Haustein et al. (2017) respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Negative claim	Positive claim	References
	00000	

A deflated interpretation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What is s	tatistics?		
Intro	Negative claim	Positive claim	References
0000	000000	●0000	

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Most basically: a method for scoring hypotheses based on compatibility with the evidence.

Some scoring methods yield probabilities. In particular:

- confidence level
- posterior probabilities

"Deflationist"	probability on the e	vidence	
Intro	Negative claim	Positive claim	References
0000	000000	0●000	

The Kolmogorov-obeying "score" yielded by applying the best available statistical methods to the evidence.

Dos and	don'ts		
		00000	
Intro	Negative claim	Positive claim	References

Dos:

- Compare intervals across methods.
- Identify the "best guess" according to a method.
- Method-relative estimates of the strength of the evidential support.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Don'ts:

- Interpret in terms of frequencies or credences.
- Plug into your decision matrix.

In	ıtr	

Positive claim 000●0

The IPCC's use of likelihoods

Claim: the IPCC's talk of likelihood should be interpreted in terms of these deflated probabilities.

More precisely: when the IPCC says that "the *likely* range [for ECS] is 2.5° C to 4° C," that means that they *estimate* that the score that would be assigned to that hypothesis by an ideal application of our best available method(s) to our available evidence is between 0.66 and 0.90.

The "best methods" won't always be perfectly applicable.

Statistical models are usually idealized; the ones in climate science are heavily so.

Hence the secondary talk of "confidence": can't be entirely sure that the ideal method would generate the same results as are actually recorded.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Intro 0000	Negative claim 000000	Positive claim	References
	Gillett, Nathan P. et al. (2013).	Constraining the Ratio of	f Global
	Warming to Cumulative CO ₂	Emissions Using CMIP5	
	Simulations. Journal of Clima	te 26.18: 6844–58.	
	Gillett, Nathan P. et al. (2021).	Constraining Human Con	tributions
	to Observed Warming since t	he Pre-industrial Period. <i>I</i>	Vature
_	Climate Change 11: 207–12.		
	Haustein, Karsten et al. (2017).	A real-time Global Warm	ing Index.
_	Scientific Reports 7 (15417):	1-6.	
	Helgeson, Casey, Richard Bradle	ey, and Brian Hill (2018).	
	Combining Probability with Q	ualitative Degree-of-Certa	ainty
_	Metrics in Assessment. Clima	tic Change 149.3: 517–25	
	IPCC (2013). Climate Change 2	2013: The Physical Science	e Basis.
	Ed. by Thomas F. Stocker et	al. Fifth Assessment Repo	ort of the
	Intergovernmental Panel on C	Climate Change. Cambridg	;e:
	Cambridge University Press.		

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

IPCC (in press). Climate Change 2021: The Physical Science Basis. Ed. by Valérie Masson-Delmotte et al. Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

- Jones, Gareth S., Peter A. Stott, and Nikolaos Christidis (2013). Attribution of Observed Historical Near–Surface Temperature Variations to Anthropogenic and Natural Causes Using CMIP5 Simulations. *Journal of Geophysical Research: Atmospheres* 118.10: 4001–4024.
- Mastrandrea, Michael D. et al. (2010). Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. URL:

https://www.ipcc.ch/site/assets/uploads/2017/08/ AR5_Uncertainty_Guidance_Note.pdf.

Ribes, Aurélien, Saïd Qasmi, and Nathan P. Gillett (2021). Making Climate Projections Conditional on Historical Observations. Science Advances 7.4: 1–9.

Negative claim	Positive claim	References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Winsberg, Eric (2018). *Philosophy and Climate Science*. Cambridge: Cambridge University Press.