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The classical debate

“As is well known, the acceptance or rejection of

such a hypothesis presupposes that a certain level of

significance or level of confidence or critical region

be selected.” (Rudner 1953, 3)

“the activity proper to the scientist is the assign-

ment of probabilities (with respect to currently avail-

able evidence) to the hypotheses which, on the

usual view, he simply accepts or rejects.” (Jeffrey

1956, 237)
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Three observations

1 Strictly speaking, Rudner’s argument only applies to a (strict)
NP testing framework. Fisherian/hybrid approaches don’t
employ acceptance levels or regions.

2 Modern rejoinders to Jeffrey—e.g., Douglas (2000), Steele
(2013)—have focused on other ways that values can enter into
the testing process or the need to communicate results.

3 It is thus an open question whether the scientist qua (classical)
statistician must make value judgments.
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Obligatory Simpsons reference
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The thesis

Yes, the scientist qua statistician must make value judgments.

Focusing on the use of estimators:

The choice of estimators is open to exactly analogous
conditions as the choice of acceptance level.

All permissible estimators will eventually converge on the
truth – a feature shared by Rudner’s original example.

Which calls into question whether Rudner’s example (a) can or
(b) should play the role often assigned to it in the literature.
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Estimators and inductive risk
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Estimators

An estimator is a kind of test statistic: it’s a rule for deriving a
“best guess” (the “estimate”) for a quantity of interest
(“estimand”) from the sample. E.g.:

1 If the quantity of interest is the population mean, the sample
mean, median, or mode serve as the estimator.

2 Similarly for higher moments of the distribution, such as
variance or skew.
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Which estimator should we use?

Generally, prefer the estimator with the smallest (expected) loss.

Data
3.23 1.92 4.28 2.57 4.20 2.97 3.87 2.60
2.62 3.72 2.72

Loss function Estimator Estimate

Mean absolute error (Σxp|Y ´ x |q{nq Median 2.97
Mean squared error (ΣxpY ´ xq2{nq Mean 3.15
Mean quartic error (ΣxpY ´ xq4{nq unnamed 3.19

Data are estimates for equilibrium climate sensitivity taken from Tokarska et al. (2020). Notably, there’s discussion

in the literature about how to estimate variance in this case (see Annan and Hargreaves 2011; Dethier 2022).
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Weighting different types of errors

These different functions represent different attitudes towards error.

MAE: errors of 1, 2, and 4 count for 1, 2, and 4.

MSE: errors of 1, 2, and 4 count for 1, 4, and 16.

MQE: errors of 1, 2, and 4 count for 1, 16, and 256.

Or: which estimator you should use depends on how you weight
small vs. large errors.
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Hypothesis testing

To carry out the most basic hypothesis test:

1 Calculate the value of the test statistic Z :

estimator of the mean ´ hypothesized mean

standard deviation{
?
sample size

2 Calculate the probability of observing a value greater than the
result using a normal distribution.

3 The resulting probability is the p-value, which quantifies how
well the evidence “fits” the hypothesis.
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Generalizing

The examples just given generalizes in a fairly trivial way to
(almost all of?) the rest of inferential statistics, either by way of

1 relying on estimators—i.e., loss functions—to select an
estimate (as here); or

2 relying explicitly or implicitly on loss functions in other ways
(e.g., least-squares algorithms in regression).

So the same value-laden choices about loss functions are
ubiquitous in classical statistics.
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The parallel with Rudner’s argument

Rudner’s argument:

(P1) Scientists qua scientists must choose an acceptance level.

(P2) The choice of acceptance level requires weighting different errors.

(P3) Weighting different errors requires making value judgments.

6 (C) Scientists qua scientists must make value judgments.

Our argument:

(P1) Scientists qua classical statisticians must choose estimators.

(P2) The choice of estimator requires weighting different errors.

(P3) Weighting different errors requires making value judgments.

6 (C) Scientists qua classical statisticians must make value judgments.



Intro Statistics Consistency Implications References

The parallel with Rudner’s argument

Rudner’s argument:

(P1) Scientists qua scientists must choose an acceptance level.

(P2) The choice of acceptance level requires weighting different errors.

(P3) Weighting different errors requires making value judgments.

6 (C) Scientists qua scientists must make value judgments.

Our argument:

(P1) Scientists qua classical statisticians must choose estimators.

(P2) The choice of estimator requires weighting different errors.

(P3) Weighting different errors requires making value judgments.

6 (C) Scientists qua classical statisticians must make value judgments.



Intro Statistics Consistency Implications References

Consistent estimators and inductive risk
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Consistency

In most contexts, any permissible estimator is consistent.

The main definition of consistency is that the estimator Xn

“converges in probability” with the target θ:

@ϵ ą 0, lim
nÑ8

Prp|Xn ´ θ| ą ϵq “ 0

Or, more simply:

plim
nÑ8

Xnpθq “ θ
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Consistency and values

In the limit, the differences between the estimates generated by
permissible estimators (almost surely) disappear.

Or: no matter how substantial the divergence of values, sufficient
data will (almost surely) wash values out of the estimate.

And it has the same effect on Rudner’s original example!
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Consistency and acceptance levels

Let zα indicate the “critical value”: if the hypothesis is true, the
probability of observing |Z | ą zα for a given sample size is α.

The accept and reject criteria are then:

Accept: if |z | ď zα Reject: |z | ą zα

Claim: If the underlying estimator is consistent, as n Ñ 8, the
probability of accepting a true hypothesis goes to 1 and the
probability of accepting a false one goes to 0 for any zα P p0,8q.

Technically, you could define the acceptance region without reference to a test statistic. The resulting tests are not

“completely consistent” (Andrews 1986) – which obviates the point of using a consistent estimator in the test.
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When we enforce consistency

Recall that Z is defined as follows:

Z “
estimator of the mean ´ hypothesized mean

standard deviation{
?
sample size

“
Xn ´ θ0
σ{

?
n

Consistency (recall): @ϵ ą 0, lim
nÑ8

Prp|Xn ´ θ| ą ϵq “ 0.

If the hypothesis is true (θ0 “ θ): @zα ą 0, lim
nÑ8

Prp|Z | ď zαq “ 1

If the hypothesis is false (θ0 ‰ θ): @zα ą 0, lim
nÑ8

Prp|Z | ď zαq “ 0
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So what?

Different choices of how to prioritize errors w.r.t. either

1 loss functions / estimators

2 acceptance levels / critical values

converge on the same conclusion / decision in the limit.

When we focus on specific cases rather than on the full range of
consistent estimators, we can be more specific.

E.g., when i.i.d. sampling from a normal distribution, the sample
variance s2 converges on the population variance σ2 as n Ñ 30 for
most practical purposes.
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What have we learned about inductive risk?
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The modern argument

“I will argue that non-epistemic values are a required

part of the internal aspects of scientific reasoning

for cases where inductive risk includes risk of non-

epistemic consequences.” (Douglas 2000, 559)

It’s inaccurate to describe Douglas’s argument as

a “revival, reiteration, or rediscovery” of Rudner’s

(Havstad 2022, 309).
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Nevertheless...

Rudner’s example of balancing false positives and negatives
continues of play an extremely important role in the literature.

Particularly in motivating the claim that values can legitimately
influence scientific reasoning in other contexts / domains.

We see this not just of Douglas (2000) but also in Biddle (2013), Brown

(2013), Elliott (2022), Frank (2019), John (2015), Parker (2014),

Plutynski (2017), Steel (2010), Steele (2013), Stegenga (2017), and

Wilholt (2009).



Intro Statistics Consistency Implications References

And yet!

These statistical examples have the special feature that the
influence of values will eventually wash out.

In other words:

1 Values can only influence conclusions in short/medium term

2 Conclusions should (with probability) converge over time
(regardless of actually reaching the infinite limit)

It is an open question whether any of the extensions mentioned on
the last page have similar features.
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Consequences

Insofar as arguments for extending legitimate values-influence
depend on the analogy to the Rudner example, those arguments
bear re-examination.

More positively, our discussion suggests at least one path forward
on “the new demarcation question” (Holman and Wilholt 2022):

Namely, value-influence is legitimate when? if? only if? they wash
out in a manner analogous to what we find in the Rudner example.
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The end

Thank you!!
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